The influence of neural tube-derived factors on differentiation of neural crest cells in vitro. I. Histochemical study on the appearance of adrenergic cells.

نویسندگان

  • M J Howard
  • M Bronner-Fraser
چکیده

The neural crest gives rise to numerous derivatives including adrenergic and cholinergic neurons, supportive cells of the nervous system, and melanocytes. In tissue culture, neural crest cells explanted from both cranial and trunk regions were found to differentiate into adrenergic neuroblasts or into pigmented cells when grown in medium containing 10% chick embryo extract. When the embryo extract concentration was lowered to 2%, no catecholamine-containing cells (as assayed by formaldehyde-induced fluorescence) were detected, although pigment cells were observed. These results suggest the presence of a factor(s) in embryo extract that promotes or supports adrenergic differentiation. To examine the possible tissue sources of this factor(s), neural tube, notochord, or somite cells were used to condition medium containing 2% embryo extract. When neural crest cells were grown in medium conditioned by neural tube cells, adrenergic neuroblasts were observed in all cultures. However, somite- and notochord conditioned medium did not support adrenergic differentiation. In addition, medium supplemented with extracts derived from central nervous system components did support adrenergic expression, whereas medium supplemented with embryo extract from which the neural tissue was removed did not. Direct contact with neural tube cell ghost membranes was unable to substitute for high embryo extract concentrations or for neural tube-conditioned medium. These results suggest that the neural tube makes a diffusible factor(s) that will support adrenergic differentiation of neural crest cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The effect of Fibroblast Growth Factor-2(FGF-2) and retinoic acid on differentiation of mouse embryonic stem cells into neural cells

Introduction: Embryonic Stem (ES) cells as pluripotent cells derived from the inner cell mass of blastula can differentiate to neural cells in vitro and this property is valuable in studies of neurogenesis and in the generation of donor cells for transplantation. In this regard, the propose of this research, was the study of the role of two important factors in the development of neural syst...

متن کامل

Evaluation of Enamel Matrix Derivative (EMD) Teratogenicity on the Rat Embryo Neural Crest Culture

Enamel matrix derivative Emdogain (EMD) is widely used in periodontal treatment in spite of the fact that its effect on the developing embryo has not been elucidated. The aim of this study was to investigate the teratogenic effect of EMD on the rat embryo neural crest cells. The neural crest is a unique population of cells that migrates from the dorsal neural tube along defined pathways and pro...

متن کامل

Evaluation of Enamel Matrix Derivative (EMD) Teratogenicity on the Rat Embryo Neural Crest Culture

Enamel matrix derivative Emdogain (EMD) is widely used in periodontal treatment in spite of the fact that its effect on the developing embryo has not been elucidated. The aim of this study was to investigate the teratogenic effect of EMD on the rat embryo neural crest cells. The neural crest is a unique population of cells that migrates from the dorsal neural tube along defined pathways and pro...

متن کامل

Emergence of signs of neural cells after exposure of bone marrow-derived mesenchymal stem cells to fetal brain extract

Objective(s): Nowadays much effort is being invested in order to diagnose the mechanisms involved in neural differentiation. By clarifying this, making desired neural cells in vitro and applying them into diverse neurological disorders suffered from neural cell malfunctions could be a feasible choice. Thus, the present study assessed the capability of fetal brain extract (FBE) to induce rat bon...

متن کامل

Human Olfactory Ecto-mesenchymal Stem Cells Displaying Schwann-Cell-Like Phenotypes and Promoting Neurite Outgrowth in Vitro

Strategies of Schwann cell (SC) transplantation to regenerate the peripheral nerve injury involves many limitations. Stem cells can be used as alternative cell sources for differentiation into SCs. Given the high potential of neural crest-derived stem cells for the generation of multiple cell lineages, in this research, we considered whether olfactory ecto-mesenchymal stem cells (OE-MSCs) derive...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 5 12  شماره 

صفحات  -

تاریخ انتشار 1985